

Disclaimer

This presentation contains forward-looking statements within the meaning of the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995 about financial results and estimates, business strategy, clinical trial plans and research and development programs of Cyclacel Pharmaceuticals, Inc. By their nature, forwardlooking statements and forecasts involve risks and uncertainties because they relate to events and depend on circumstances that will occur in the future and are generally preceded by terms such as "may," "will," "should," "could," "would," "expects," "plans," "anticipates," "believes," "estimates," "projects," "predicts," "potential," and similar expressions (including the negative thereof). For a further list and description of the risks and uncertainties the Company faces, please refer to our most recent registration statement on Form S-1, most recent Annual Report on Form 10-K and other periodic and current filings that have been filed with the Securities and Exchange Commission and are available at www.sec.gov. The information in this presentation is current as of this date. Cyclacel does not take any responsibility to update such information.

Cyclacel Summary

- Founded by Prof. Sir David Lane, PhD (discovery of p53): CDK2/9 hypothesis
 - Prof. David Glover, PhD (discovery of Aurora, Polo mitotic kinases): PLK-centric hypothesis
- Experienced management team
- Converting cell cycle control biology into innovative oncology medicines
- Two assets targeting CDK2/9 and PLK1 entering mid-stage development
- \$47.8m cash position; recent financing brought in quality fundamental investors
- Array of multiple data readouts

Experienced Executive Leadership

Spiro Rombotis President & CEO

Paul McBarron COO & CFO

Mark Kirschbaum, MD CMO

Clinical Stage Value Drivers

Fadraciclib CDK2/9 inhibitor (i.v. and oral)

- Demonstrated i.v. clinical proof of mechanism as a single agent
- 1st CDK2/9i to show durable MCL1 suppression & anticancer activity in patients
- Streamlined Phase 1/2 oral solid tumor study to start 1H21; multiple cohorts, registration enabling (MCL1/ CCNE/ MYC-amplified)

CYC140 PLK1 inhibitor (i.v. and oral)

- Optimized oral PLK inhibitor with short half life
- Compelling preclinical data in liquid & solid cancers
- Streamlined Phase 1/2 oral solid tumor study to start 2H21; multiple cohorts, registration enabling (PLK1, MYC amplified, KRAS mutated)

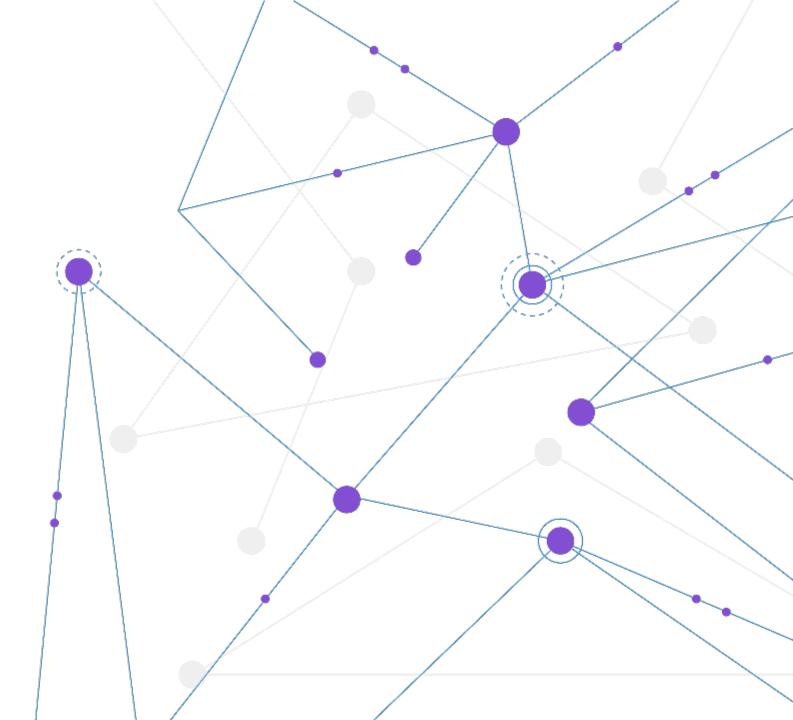
Fadraciclib and CYC140 in KRAS Mutant Cancers

Fadraciclib, CDK2/9i

- Overactive colorectal cancer KRAS mutants impeded by CDK9 inhibitors¹
- KRAS mutant pancreatic cancer sensitive to CDK9 inhibition²
- Fadra effective against KRAS mutant lung cancer in preclinical PDX models³

CYC140, PLK1i

- 140 series active in KRAS mutant colorectal cancer preclinical xenograft model⁴
- PLK1 inhibitor onvansertib + SoC: 5/14 PR in KRAS mutant colorectal patients



Fadraciclib (aka CYC065)

CDK2/9 inhibitor

Fadraciclib CDK Inhibitor Overview

Highly selective small molecule inhibitor of

- CDK9 (regulation of transcription and survival) and
- CDK2 (cell cycle control)

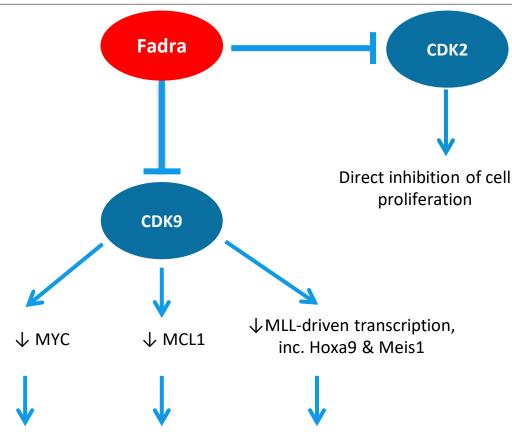
Data and mechanism support development in solid tumors and hematological malignancies

- Anti-apoptotic MCL1 (incl. ALL, AML, CLL, MM and various solid tumors)
- Oncogenic MYC family (e.g. breast, B-/T-cell lymphoma, KRAS tumors, prostate...)
- Cell cycle regulator CDK2/cyclin E (incl. drug-resistant breast, uterine serous CA)
- KRAS mutant (incl. colorectal)

Durable MCL1 suppression and deep PR in IV studies

Favorable oral pharmacokinetics with half-life of ~4 hours

Fadraciclib CDK Inhibitor Target Profile


Aim: restore apoptosis (CDK2i enhances apoptosis by CDK9i) 1

CDK9 → transcriptional regulation of anti-apoptotic proteins MCL1, MYC, MYCN, MYB, DMD2, ... ²

CDK2 → cell cycle checkpoint regulation (cyclin **E** (*CCNE*) overexpression leads to chemo & targeted drug resistance) ³

CDK4/6 inhibitor refractory, HER2+ve refractory breast CA

- Palbociclib plus HR+ Rx failure stat sig correlated with cyclin E overexpression (PALOMA-3) ⁴
- Cyclin E amplification/overexpression is a mechanism of trastuzumab (Herceptin®) resistance ³

Apoptosis of tumors that are dependent on CDK9-mediated transcription of MCL1, MYC or MLL-target genes

Fadraciclib Early to Mid-stage Development

Low intensity i.v. schedules (Ph 1; 1x every 3wk; 4x every 3wk)

Single agent

- Well-tolerated, short half-life, molecular target inhibition, durable PR and SD in advanced solid tumors
- Good oral bioavailability data presented at the EORTC-NCI-AACR Meeting 2020

Combination with venetoclax (MCL1 and BCL2 double-hit strategy)

- R/R AML: Reduction in peripheral blast counts, TLS observed at highest dose
- R/R CLL: Lymph node reduction, MRD +ve to MRD –ve conversion observed

Next step

Ph 1/2 studies with oral, optimized biological schedule

Phase 1 First-in-Human Study in Solid Tumors

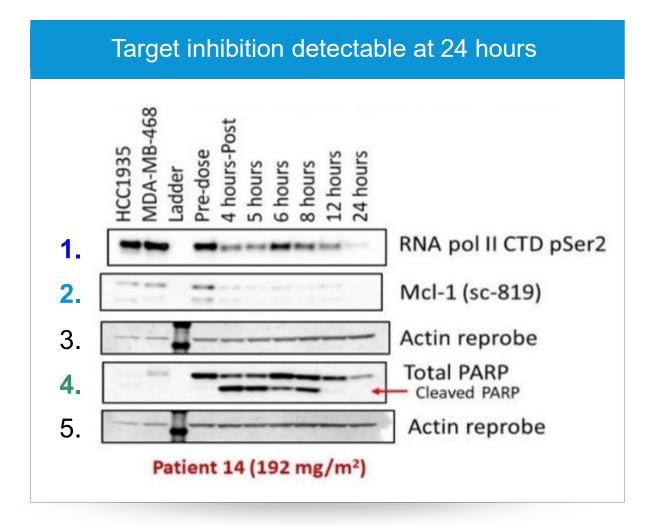
Primary objective

Determine fadraciclib MTD and recommended Phase 2 dose (RP2D)

Secondary objective

Evaluate pharmacokinetics

Assess PD markers (RNA Pol II CTD P-Ser2 and MCL1 levels in PBMCs)


CYC065-01 design (single agent)

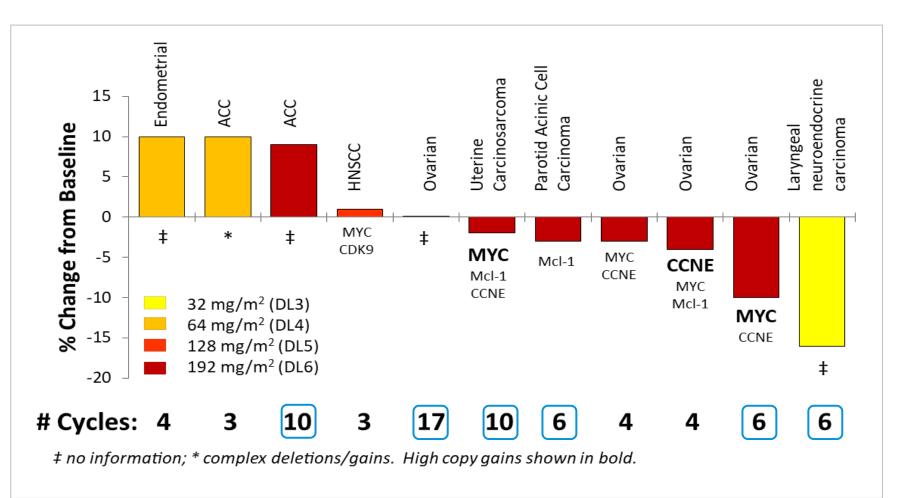
Open label, single arm, dose escalation study in patients with advanced solid tumors. 3-part study:

- Part 1: 4h infusion 1x every 3wk; n=26
- Part 2: 1h infusion 4x every 3wk (d1, d2, d8, d9); n=26
- Part 3: oral 4x every 3wk (d1, d2, d8, d9); n=7

Fadraciclib's Target Inhibition Facilitates Cancer Cell Apoptosis

Markers of interest: Western Blot analysis

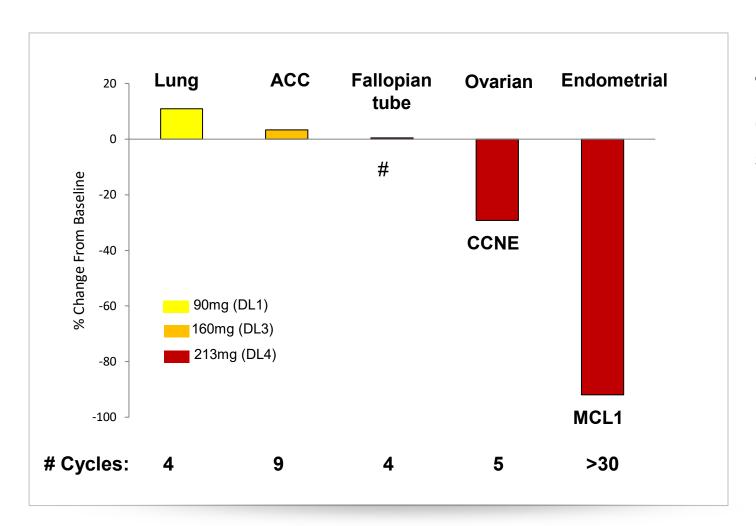
Row 1: Reduction of RNA Polymerase II C-terminal domain Serine 2 phosphorylation (inhibition of CDK9)


Row 2: Suppression of MCL1 level in patient sample within 4h of starting treatment; MCL1 levels remained suppressed up to 24h

Row 4: Cleaved PARP enzyme during fadraciclib treatment in patients indicating engagement of apoptosis

Rows 3 and 5: Control protein for normalization

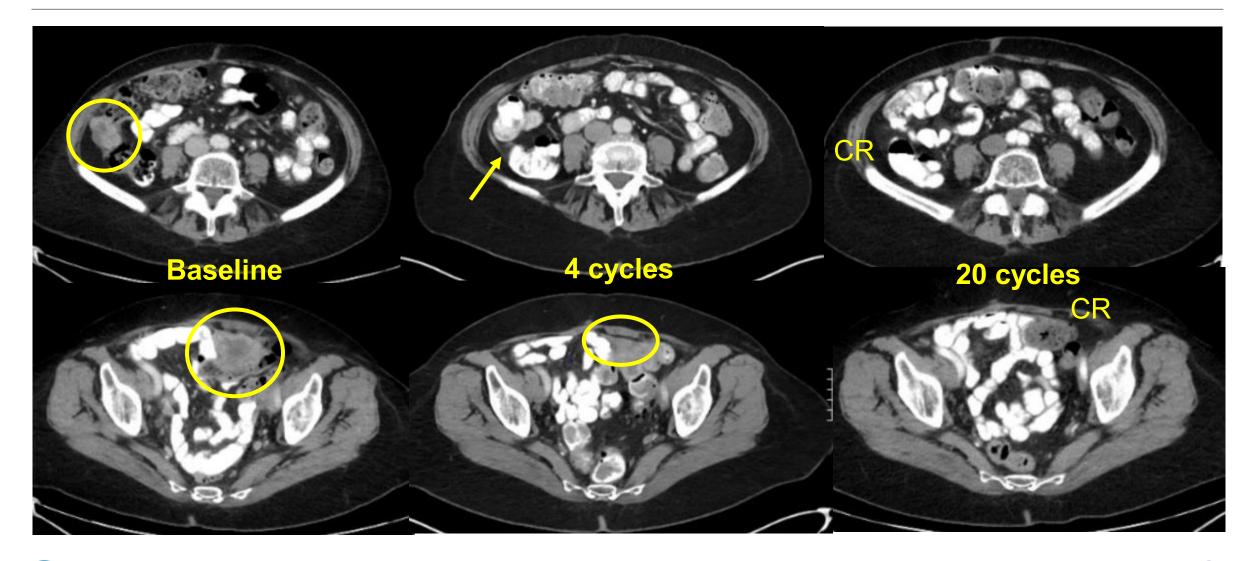
CYC065-01 Phase 1 Part 1 Change in Tumor Volume


Patients with high copy CCNE, MYC and/or MCL1 sensitive to single-agent fadraciclib

4h infusion every 3wk:

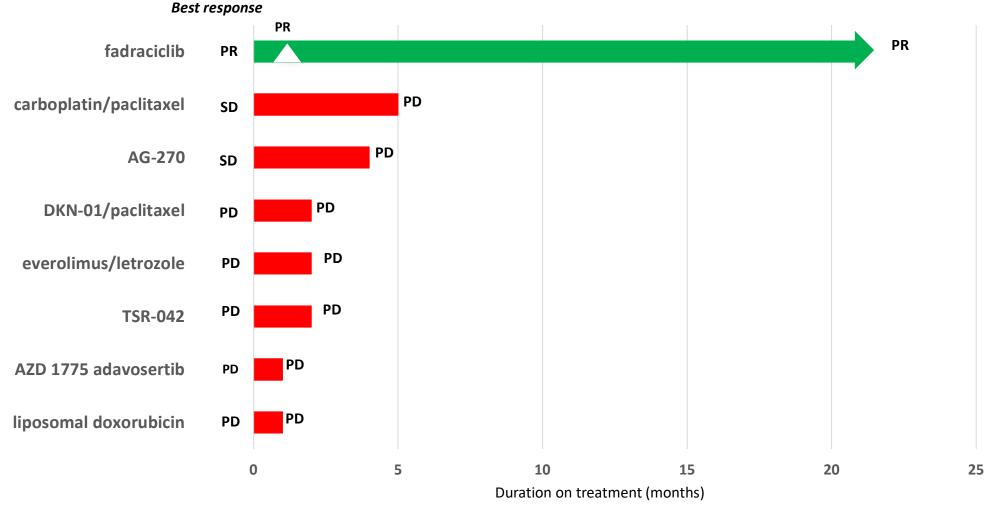
- 20/26 patients evaluable (RECIST 1.1 response)
- 6/11 achieved SD for 6 or more cycles (boxed)

CYC065-01 Phase 1 Part 2 Activity



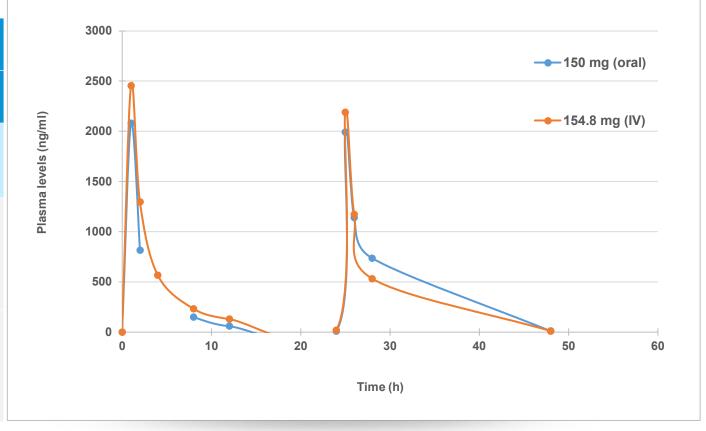
Tumors with MCL1 and CCNE overexpression respond to fadraciclib single agent

- Improved efficacy with more frequent 1h infusions on d1, 2, 8, 9 every 3wk
- Confirmed PR at 4 cycles (MCL1 amplified endometrial cancer; deep ongoing response ~2 years; 96% shrinkage at cycle 31)
- SD >4 cycles in cyclin E amplified ovarian cancer


PR in MCL1 Amplified Endometrial Patient

Fadraciclib Most Efficacious Treatment

(endometrial adenocarcinoma patient with MCL1 amplification)



CYC065-01 Phase 1 Part 3 Oral Bioavailability

Oral dosing regimen: qd on days 1, 2, 8 and 9 every 3 wk; ongoing

Oalbant	Day 1					
Cohort	Half-life	C _{max}	AUCinf			
(mg)	(h)	(ng/ml)	(h*ng/ml)			
150 Free Base equivalent (oral)	3.97	2080	6250			
154.8 Free base equivalent (IV)	3.51	2460	8190			

Fadraciclib plasma levels after oral and 1h-IV infusion

Fadraciclib Oral Phase 1/2 Solid Tumor Study Design

Dose Escalation*

(3+3 design; 1-3 sites)

Dose Level 4

100mg bid daily M to F

Dose Level 3

75mg bid daily M to F

Dose Level 2

50mg bid daily M to F

Starting Dose Level

50mg bid daily MWF

Dose Level -1

50mg bid M Th

Schedule: 3-4 wk/cycle. Enrich for

tumor types of interest to MoA.

Proof of Concept*

(Simon 2-stage; ~10 sites)

Cohort 1

Endometrial, Ovarian

Cohort 2

Cholangiocarcinoma

Cohort 3

Jepatocellular Carcinoma

Cohort 4

Breast (post-CDK4/6i, TNBC, HER-2 refr.)

Cohort 5, 6

Lymphoma (B-cell; T-cell)

Cohort 7

mCRC (including KRAS mutated)

Cohort 8 Basket: tumors suspected to

have related MoA (expand if responses)

Pivotal**

(if randomized study not needed; sites TBD)

Single-arm, open label, study for n=TBD cancer patients

Indication in pivotal study to be determined based on clinical data from PoC

Fadraciclib Oral Phase 1/2 Leukemia Study Design

Dose Escalation*

(3+3 design; 1-3 sites)

Dose Level 4

100mg bid daily M to F

Dose Level 3

75mg bid daily M to F

Dose Level 2

50mg bid daily M to F

Starting Dose Level

50mg bid daily MWF

Dose Level -1

50mg bid M Th

Schedule: 3-4 wk/cycle. Enrich for

tumor types of interest to MoA

Proof of Concept*

(Simon 2-stage; ~10 sites)

Cohort 1

R/R AML/MDS, older

Cohort 2

CLL

Cohort 3;4

AML combo +aza; +ven

Cohort 5

CLL combo +ven

Cohort 6 Basket: tumors suspected to

have related MoA (expand if responses)

Pivotal**

(if randomized study not needed; sites TBD)

Single-arm, open label, study for n=TBD cancer patients

Indication in pivotal study to be determined based on clinical data from PoC

Fadraciclib is Addressing Large Markets (e.g. cyclin E / CCNE1)

High Grade Serous Ovarian Cancer 2L

- 27k US incidence; ~79k prevalence
- CCNE1 amplified >20% of patients; worse survival than BRCA mutant patients

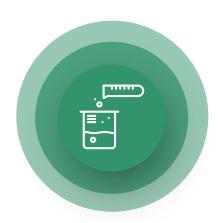
Endometrial/Uterine 2L

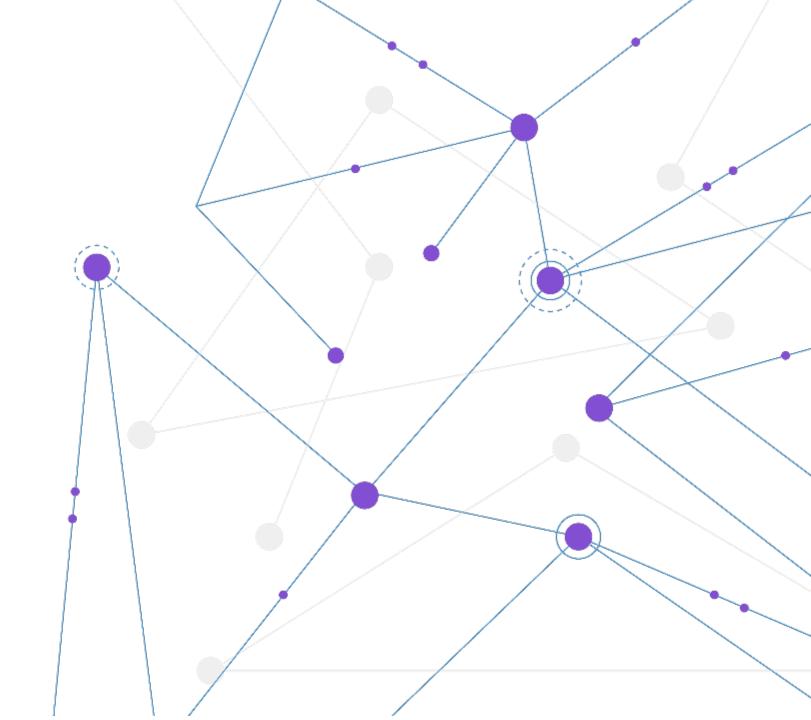
- 5k US incidence; ~77k prevalence
- CCNE1 is 20% of high grade serous which is 50% of total

Breast HR+ 2L

- 56k US incidence; ~735k prevalence
- CCNE1 is 30% of HR+ which is 73% of total

Breast Cancer BRCA1/2+


- 18k US incidence; ~238k prevalence
- CCNE1 is 40% of BRCA+ which is 17% of total



CYC140

PLK1 Inhibitor

CYC140 PLK1 Inhibitor Summary

Optimized oral PLK inhibitor with short half life

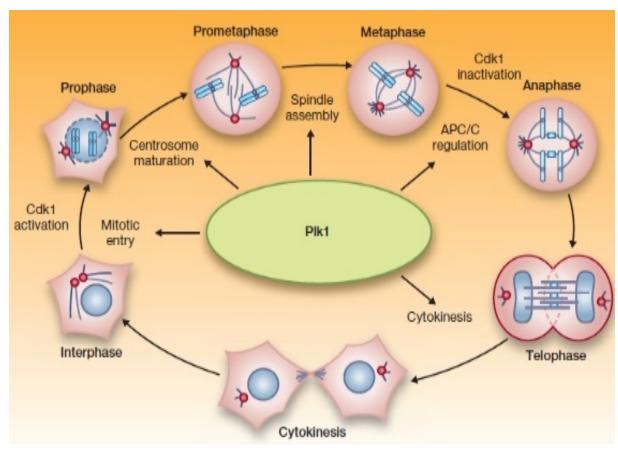
Improved PLK-family kinase selectivity

Favorable PK, increased dosing flexibility

Broad single agent preclinical activity supports potential single agent clinical activity

Next step

Phase 1/2 oral CYC140 with optimized biological schedule


PLK1: Key Mitotic Regulator

Oncogene with key role in regulation of

- mitotic entry and exit
- spindle formation
- cytokinesis

Cancer very sensitive to PLK1 depletion, esp.

- mutated KRAS and p53(-)
- blocks proliferation by prolonged mitotic arrest
- onset of apoptotic death in cancer cells
- normal cells with intact checkpoints less sensitive

Medema RH et al. (2011) Clin Can Res 17(20):6459-66

PLK Inhibitors in Clinical Development

Volasertib

(Boehringer Ingelheim; i.v. BI-6727 discontinued)

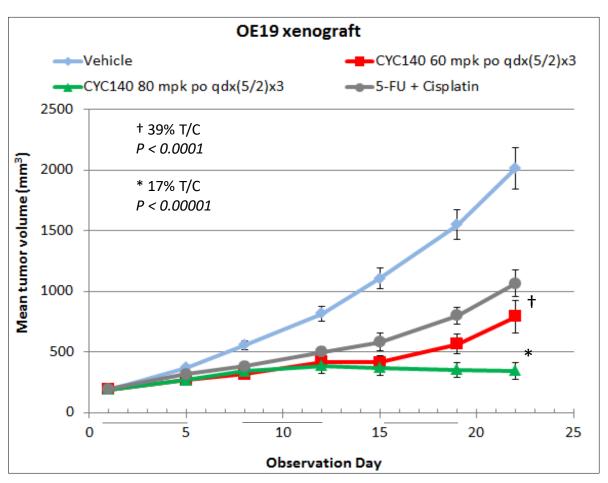
- BTD in AML Ph2 data; but Ph 3 POLO-1 in AML failed (imbalance of deaths)
- Dose intensity led to single agent activity; long terminal half-life ~110h

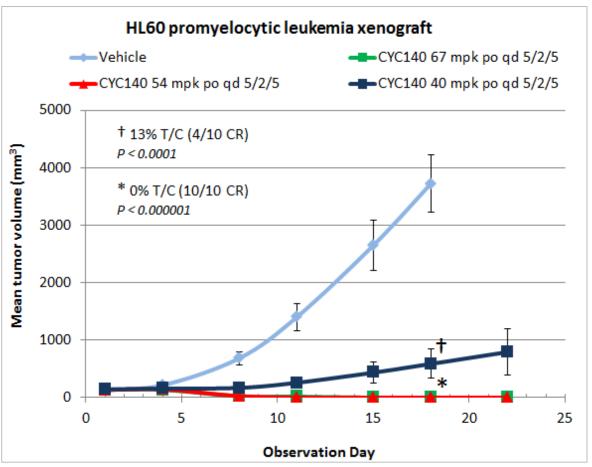
Onvansertib

(Cardiff; p.o., selectivity mainly PLK1, secondarily CDK9, etc.*)

- Signal in KRASmut mCRC with bevacizumab/FOLFIRI; terminal t_{1/2} ~24h
- Ph 1b studies in AML with chemo; prostate with abiraterone; mPDAC with chemo

CYC140


(Cyclacel; p.o. and i.v. selectivity mainly PLK1, secondarily PLK2, PLK3)


- Preclinical activity in multiple solid tumors and leukemias; terminal $t_{1/2}$ ~11h
- Aim: oral, dose intense, Ph 1/2 in multiple solid tumors and leukemia cohorts
- Rapid read-out of single agent clinical activity followed by registration-enabling single agent and/or combination designs

CYC140 Preclinical Efficacy

Potent and selective inhibitor (PLK1 IC₅₀ ~3 nM)

CYC140 Oral Ph1/2 Solid Tumor Study Design

Dose Escalation*

(3+3 design; 1-3 sites)

Dose Level 3

TBD

Dose Level 2

TBD

Starting Dose Level

TBD

Dose Level -1

TBD

Schedule: 3-4 wk/cycle. Enrich for

tumor types of interest to MoA

Proof of Concept*

(Simon 2-stage; ~10 sites)

Cohort 1

mCRC (incl. KRAS mut)

Cohort 2

Breast

Cohort 3

TBD

Cohort 4

TBD

Cohort 5

TBD

Cohort 6 Basket: TBD (expand if

responses)

Pivotal**

(if randomized study not needed; sites TBD)

Single-arm, open label, study for n=TBD cancer patients

Indication in pivotal study to be determined based on clinical data from PoC

CYC140 Oral Ph1/2 Leukemia Study Design

Dose Escalation*

(3+3 design; 1-3 sites)

Dose Level 3

TBD

Dose Level 2

TBD

Starting Dose Level

TBD

Dose Level -1

TBD

Schedule: 3-4 wk/cycle. Enrich for

tumor types of interest to MoA

Proof of Concept*

(Simon 2-stage; ~10 sites)

Cohort 1

R/R AML, older patients

Cohort 2

MDS after HMA

Cohort 3

AML combo

Cohort 4

CLL combo

Cohort 5 Basket:

TBD (expand if responses)

Pivotal**

(if randomized study not needed; sites TBD)

Single-arm, open label, study for n=TBD cancer patients

Indication in pivotal study to be determined based on clinical data from PoC

Financial Position & Capitalization

Pro forma cash & cash equivalents \$47.8 millilon¹ as of March 31, 2021

Operating cash burn (annual; excludes non-cash items)

 \bigcirc 2019 ~ \$ 9.4m²

Fully diluted shares: 14.3 million³; no debt

Estimated capital to early 2023

Expected Milestones

PHASE 2					Data Solid Tumors	Data Leukemias		
					Data Solid Tumors	Data Leukemias		
PHASE 1		FPI Leukemias	Data Solid Tumors	Data Leukemias				
	FPI Solid Tumors	FPI Solid Tumors	FPI Leukemias	Data Solid Tumors	Data Leukemias			
	2021 1H	2021 2H	2022 1H	2022 2H	2023 1H	2023 2H	•	

Fadra

CYC140

Investment Thesis

Clinical stage, state-of the-art oncology programs

Targeting molecularly-defined patient populations

CDK inhibitors: validated drug class; PLK inhibitors: emerging drug class

Competitively positioned

Significant market opportunities

Thank You

Cyclacel Pharmaceuticals, Inc.

200 Connell Drive #1500 Berkeley Heights, NJ 07922

Contact: <u>ir@cyclacel.com</u> +1 (908) 517 7330